
Math 131 B, Lecture 1
Real Analysis

Sample Midterm 1

Instructions: You have 50 minutes to complete the exam. There are five problems, worth a
total of fifty points. You may not use any books or notes. Partial credit will be given for progress
toward correct proofs.

Write your solutions in the space below the questions. If you need more space use the
back of the page. Do not forget to write your name in the space below.

Name:

Question Points Score

1 10

2 10

3 10

4 10

5 10

Total: 50



Problem 1. 10pts.
Let (S, dS) and (T, dT ) be two metric spaces, each having more than one point. Their
Cartesian product is the set S × T = {(s, t) : s ∈ S, t ∈ T}. Below are two proposed
metrics for S × T . Which is a valid metric? Justify your answer.

d1((s1, t1), (s2, t2)) = dS(s1, s2) + dT (t1, t2)

d2((s1, t1), (s2, t2)) = dS(s1, s2) · dT (t1, t2)

Solution: We see that d2 is not a valid metric: consider (s, t) and (s, t′), where
the second coordinate differs but not the first. Then we have d2((s, t), (s, t

′)) =
dS(s, s) · dT (t, t′) = 0 · dT (t, t′) = 0. But (s, t) 6= (s, t′), so this violates positivity.

However, it’s straightforward to check that d1 is valid metric.

Problem 2.

(a) [5pts.] Let (M,d) be a metric space, and S ⊆M . Give a definition of a limit point
of S.

Solution: We say that p ∈M is a limit point of S if every ball B(p; r) contains
a point of S other than p.

(b) [5pts.] We say that S ⊂M is a dense subset of M if every open set in M contains
a point of S. Prove that if S is dense in M , S = M .

Solution: It suffices to show that any point p of M − S is a limit point of S.
Let B(p; r) be any ball around p, then since B(p; r) is open in M and S is dense
in M , B(p; r) must contain a point of S (other than p, since p /∈ S). Ergo p is
a limit point of S, and S = M .

Problem 3.

(a) [5pts.] Give a definition of a compact set.

Solution: We say that S ⊂M is compact if for every open covering F = {Aα}
of S there is a finite subcover A1, · · · , An such that S ⊂

⋃n
i=1 Ai.

[Editorial note: A very common mistake is stating this definition with some
form of “there is an open covering with a finite subcover” or trying to use this
formulation in a proof. For a space to be compact, every open covering has to
have a finite subcover.]



(b) [5pts.] Let S be compact and X ⊂ S be closed. Prove that X is also compact.

Solution: Suppose that X has a cover F = {Aα} of open sets in S. Then
F ∪ (S − X) is an open cover of S. (Note that S − X is open in S since X
is closed. Ergo some finite subcollection S −X,A1, · · · , An covers S. But this
implies that A1, · · · , An covers X, since S − X contains no points of X. So a
finite subcollection of F covers X. Since F was arbitrary, X is compact.

Problem 4.

(a) [5pts.] Let {xk} be a sequence in Rn, where each xk = (xk1, · · · , xkn). Prove that
{xk} converges in Rn if and only if each sequence {xki } converges in R.

Solution: Notice that for any points x and y in Rn, |xi − yi| ≤√∑n
i=1(xi − yi)2 ≤

√
nmax{|xi − yi| : 1 ≤ i ≤ n}, where the first inequality is

valid for any i. We can use the first inequality to show that if {xk} converges,
each {xki } converges, and the second to show that if each {xki } converges

(b) [5pts.] Use part (a) to give a short proof that every bounded sequence in Rn has
a convergent subsequence. (Hint: Pick a subsequence that converges in the first
coordinate, then look at the second coordinate...)

Solution: Let {xk} be a sequence in Rn. Consider the sequence of real numbers
{xk1}. It has a convergent subsequence {xsk1 }, by Bolzano-Weierstrass for R. Now
consider the sequence of real numbers {xsk2 } (that is, the second coordinates
of the subsequence we chose). This sequence has a subsequence {xtk2 } which
converges; moreover, since subsequences of convergent sequences converge to
the same limit, {xtk1 } is still a convergent subsequence of {xk1}. Repeat for each
coordinate, passing to a subsequence at each step, until we have a subsequence
{xwk} such that in each coordinate, the sequence {xwk

i } converges. By part (a),
{xwk} converges in Rn.

Problem 5.

(a) [5pts.] State the Cantor Intersection Theorem.

Solution: Let Q1 ⊇ Q2 ⊇ Q3 ⊇ be a nested sequence of nonempty closed
subsets in Rn such that Q1 is bounded. Then

⋂n
i=1Qi is nonempty.

(b) [5pts.] The Cantor set is a subset of the real line constructed as follows: Let
Q1 = [0, 1] and Q2 be obtained from Q1 by removing the middle third of the
interval, i.e. Q2 = [0, 1

3
]∪ [2

3
, 1]. Then to obtain Q3, we cut out the middle thirds of

the two remaining intervals, so that Q3 = [0, 1
9
]∪ [2

9
, 1
3
]∪ [2

3
, 7
9
]∪ [8

9
, 1]. We continue

to construct Qn by removing the middle third of each interval in Qn−1. The Cantor



set is
⋂∞
i=1 Qi. The first three stages are drawn below.

Prove that the Cantor set contains infinitely many points. [Hint: The quickest way
to do this is to prove that the Cantor set has more than 2n points for any n.]

Solution: Notice that Q1 ⊇ Q2 ⊇ · · · , each Qn is closed, and Q1 is bounded.
Ergo by the Cantor Intersection Theorem, the Cantor set is definitely nonempty.
However, notice that Qn consists of 2n disjoint intervals. Each of these intervals
is at the beginning of its own chain of nested closed subsets, so the ultimate
intersection ∩∞i=nQi must contain at least one point from each interval, so at
least 2n points. Therefore the Cantor set contains more that 2n points for any
n, and we conclude that it is infinite.


